Extending Addition in Elliott′s Local Semigroup
نویسندگان
چکیده
منابع مشابه
Addition Behavior of a Numerical Semigroup 23
— In this work we study some objects describing the addition behavior of a numerical semigroup and we prove that they uniquely determine the numerical semigroup. We then study the case of Arf numerical semigroups and find some specific results. Résumé (Comportement de l’addition dans un semi-groupe numérique). — Dans ce travail, nous étudions des objets qui décrivent le comportement de l’additi...
متن کاملBass Numbers of Semigroup-graded Local Cohomology
Given a module M over a ring R that has a grading by a semigroup Q, we present a spectral sequence that computes the local cohomology H I(M) at any graded ideal I in terms of Ext modules. We use this method to obtain finiteness results for the local cohomology of graded modules over semigroup rings. In particular we prove that for a semigroup Q whose saturation Q is simplicial, and a finitely g...
متن کاملSemigroup presentations for test local groups
In this paper we exhibit a type of semigroup presentations which determines a class of local groups. We show that the finite elements of this class generate the pseudovariety LG of all finite local groups and use them as test-semigroups to prove that LG and S, the pseudovariety of all finite semigroups, verify the same κ-identities involving κ-terms of rank at most 1, where κ denotes the implic...
متن کاملModulo quantifiers over functional vocabularies extending addition
We show that first order logic (FO) and first order logic extended with modulo counting quantifiers (FOMOD) over purely functional vocabularies which extend addition, satisfy the Crane beach property (CBP) if the logic satisfies a normal form (called positional normal form). This not only shows why logics over the addition vocabulary have the CBP but also gives new CBP results, for example for ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Functional Analysis
سال: 1993
ISSN: 0022-1236
DOI: 10.1006/jfan.1993.1134